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Abstract. It has been suggested recently that coherent back-scattering of light from powder-like regolithic
surfaces can explain remarkable opposition brightening of some atmosphereless solar system bodies. In this
paper, a dense-medium light-scattering theory is used to calculate the half-width at half-maximum (HWHM)
of the coherent back-scattering peak for a number of scattering models. We demonstrate that HWHM
strongly depends on the optical properties of the scattering medium and can serve as a critical test in
comparing alternative models. It is shown that coherent back-scattering may be a likely explanation of the
opposition effect exhibited by icy outer planet satellites.

1. Introduction

Recently, it has been suggested that coherent back-scattering of light (CBL) from
discrete random media (or weak localization of photons) can account for a remarkable
opposition brightening exhibited by outer planet satellites (Hapke, 1990; Domingue
et al., 1991) and Saturn’s rings (Mishchenko and Dlugach, 1992). For media composed
of randomly distributed scattering particles and illuminated by a parallel beam of light,
CBL manifests itself as a well-defined narrow peak in the reflected light at phase angles
near zero (e.g., Sheng, 1990; Nieto-Vesperinas and Dainty, 1990). One of the main
characteristics of the coherent back-scattering peak is its half-width at half-maximum
(HWHM). Interference nature of CBL leads to a fundamental result according to which
for optically thick media HWHM is proportional to the ratio of the wavelength of light
A to the transport mean free path of photons in the medium 4,,. For media consisting
of lossless or slightly lossy scatterers, we obtain

HWHM = 4 (1)

27 Ay, |

where
At;l = nCsca(l - <COS'9>) (2)

and ¢is a constant close to 0.5 (Stephen and Cwilich, 1986; van der Mark et al., 1988,
Wolf et al., 1988 ; Barabanenkov and Ozrin, 1988). In Equation (2), # is the number of
particles per unit volume, C,_, is the scattering cross section, and {cos$ ) is the mean

sca

cosine of the scattering angle. For sparsely distributed spherical scatterers, the quantities
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C... and {cos$) may be computed from the Mie theory (e.g., van de Hulst, 1957).
However, regolithic grains in upper surface layers of atmosphereless bodies are likely
to be densely packed rather than sparsely distributed. For such media, especialy for
those consisting of particles smaller than the wavelength, spatial correlation among
scatterers can lead to a substantial increase of 4, as compared with sparsely distributed
particles. Therefore, more rigorous dense-medium scattering theories should be used to
obtain reliable results.

It is the purpose of this paper to calculate HWHM for a number of scattering models
by using a dense-medium theory, in which spatial correlation among scatterers is taken
into account by introducing the so-called static structure factor (e.g., Twersky, 1983;
Tsang and Kong, 1983; Wolf er al., 1988; Saulnier ez al., 1990). In Section 2, basic
definitions and formulae are recapitulated and the computational scheme for calculating
HWHM is summarized. In Section 3, HWHM is calculated for a number of models of
the scattering medium and dependence of HWHM on the optical characteristics of the
medium is studied. Finally, in Section 4, an application to icy outer planet satellites is
given.

2. Basic Definitions and Formulae

By definition, for a sparse, discrete, macroscopically isotropic medium,

dcC,
Csca = J‘dQ —= ’ (3)

dQ

4
dC,,

C,., {cos9) = JdQ =2 cos 9, 4
> 40 “4)

4rn

where dC,_,/dQ is the differential scattering cross section and 9 is the scattering angle
(e.g., Bohren and Huffman, 1983). For densely packed media, spatial correlation among
scattering particles can be taken into account by multiplying the differential scattering
cross section by the static structure factor S(9) (e.g., Balescu, 1975; Twersky, 1983;
Tsang and Kong, 1983; Wolfer al., 1988; Saulnier et al., 1990). Thus, Equations (3) and
(4) are replaced by the formulae

dC,,
Cscu = J‘ dQ —= S(‘g) ) (5)
dQ
4
dC,.,
Cyen {COS3) = JdQ —2 §(9)cos 9. 6)
dQ
4

The structure factor is given (Balescu, 1975) by

S9) = [1 - nC(p)], (M
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where C(p) is the three-dimensional Fourier transform of the direct correlation function
C(r),

C(p) = J dr exp (- ipr)C(r) (8)

and p = [47 sin(9/2)]/A. To calculate the direct correlation function, we use the so-
called Percus—Yevick approximation, which implies that the scattering particles are
hard, impenetrable, monodispersive spheres of a radius r, (e.g., Balescu, 1975). Thus,
we have

) = {— a— Pr¥ = d(r*)*, for r<2r,, ©)
, for r>2r,
where
r* = r/(2r,) 5 (10)
(1 + 2f)?
G P (11
Ta- gy )
(1 + /2
- —ef — 12)
i A - /) (
5= afl2 (13)
and
f = 3mnrg (14)

is the filling factor (i.e., the fraction of a volume occupied by the particles). If we insert
Equation (9) into Equation (8), we have (cf. Tsang and Kong, 1983)

u

u

nC(p) = 24f{

_2(B+65) Cosu_,_%g_{_&é sinu+gﬁ(cosu— 1)}, (15)
u4 u4 u5 u6

where u = 2pr,. For the particular case of p = 0, we have from Equations (8) and (9)
nC(0) = 24f(- /3 — p/4 - 9/6). (16)

Thus, the numerical computation of HWHM involves the following steps. First, the
structure factor S(9) is calculated via Equations (7), (15), and (16) for a given particle
radius r, and filling factor f. Next, the differential scattering cross-section dC;.,/dQ is
calculated via the Mie formulae (e.g., van de Hulst, 1957; Bohren and Huffman, 1983).
Next, the integrals in Equations (5) and (6) are computed numerically by use of a
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quadrature formula. Next, the transport mean free path is calculated via the formula

3f

3
4mry

'ltzl = Csca(l - <COS‘9>) (17)

(cf. Equations (2) and (14)). Finally, HWHM is calculated via Equation (1).

Finally, we note that, in our computations, the well-known ripple structure of mono-
disperse Mie cross sections (e.g., Bohren and Huffman, 1983) was suppressed by use
of a narrow gamma distribution of particle radii (Hansen and Hovenier, 1974)

n(r) = constant r! =39 exp[ — r/(ab)] , (18)

with a = r, and b = 0.04.

3. Calculations and Discussion

In Figures 1-3, HWHM is plotted versus a dimensionless size parameter y = r,/A for
three real refractive indices N = 1.31, 1.45, and 1.6 and four values of the filling factor
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Fig. 1. HWHM versus a dimensionless size parameter y = r,/A for the refractive index N = 1.31 and four
values of the filing factor f = 0.1, 0.2, 0.3, and 0.4. The dashed curve is computed for f = 0.3 by use of
sparse-medium formulae (3) and (4).

f=0.1,0.2,0.3, and 0.4. The refractive index N = 1.31 is close to that of H,O ice at
the visible and near-infrared wavelengths (Warren, 1984), while the refractive indices
N = 1.45 and 1.6 are characteristic for silicate materials. For the sake of comparison,
in Figure 1 the dashed curve shows computations via sparse-medium formulae (3) and
(4) for N=1.31 and f = 0.3.

The following obvious properties of HWHM can be extracted from the data shown
in Figures 1-3.

(i) The use of sparse-medium formulae (3) and (4) can lead to a substantial over-
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Fig. 2. As in Figure 1, for N = 1.45.
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Fig. 3. As in Figure I, for N = L.6.

estimation of HWHM for y < 1. Therefore, these formulae should not be used for small
size parameters (cf. Wolf et al., 1988; Saulnier et al., 1990). For larger size parameters
(¥ > 1), the sparse-medium formulae give (very) good results and in the limit y — oo the
difference between the sparse- and dense-medium formulae vanishes.

(ii) HWHM tends to zero with both y —» 0 and y — oo. Therefore, the opposition
brightening due to CBL by particles either much smaller or much larger than the
wavelength cannot be observed if the range of very small phase angles is inaccessible.

(i) All curves have a maximum near y = 0.5. With increasing filling factor, this
maximum shifts towards greater size parameters.
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(iv) The maximum is very sharp for large refractive indices and becomes (much) less
sharp for small refractive indices.
(v) The value of the maximum is (much) greater for greater refractive indices.

4. An Application to Icy Outer Planet Satellites

In this paper, we have used a dense-medium scattering theory to calculate HWHM of
the coherent back-scattering peak for a number of scattering models and have demon-
strated that HWHM is strongly dependent on the optical properties of the scattering
medium. In particular, it follows from our computations that for ice-covered surfaces,
HWHM should be small (a few tenths of degree) and can be nearly wavelength-
independent in a wide spectral region. This was really observed for Saturn’s rings
(Franklin and Cook, 1965), Uranian satellites (Brown and Cruikshank, 1983; Goguen
et al., 1989), and Europa (Domingue et al., 1991). All these objects exhibit opposition
spikes with HWHM of about 0.2-0.3° at visible wavelengths. Also, for Uranian
satellites, HWHM is nearly wavelength-independent at a wide range of wavelengths
from the visible (0.55 um) to the near infrared (2.2 pm). In Figure 4, the theoretically
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Fig. 4. HWHM versus wavelength for ice particles with f = 0.2 and r, = 0.4, 0.8, and 1.4 um.

computed HWHM is plotted versus wavelength for ice particles with f = 0.2 and
ro = 0.4, 0.8, and 1.4 pm. Spectral refractive indices of ice were taken from Warren
(1984). One sees from Figures 1 and 4 that particles with radii of about 0.8 pm and filling
factors of about 0.2 can reproduce the observed HWHM of 0.2-0.3° in this spectral
range 0.55 to 2.2 um. It is interesting to note that ice particles of essentially the same
radii are known to be present in the outer B ring of Saturn and give rise to the so-called
‘spokes’ (e.g., Doyle et al.,, 1989; Doyle and Grun, 1990). Also, Mishchenko and
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Dlugach (1992) assumed that particles of Saturn’s rings are covered with submicro-
meter-size ice grains and demonstrated that theoretical computations of the opposition
effect produced by these grians via CBL are consistent with the observations of the
opposition effect exhibited by Saturn’s rings (Franklin and Cook, 1965). Therefore, we
may suggest that submicrometer-size regolithic grains may be a common property of
ice-covered airless surfaces at low temperatures. The possible origin of such grains is
discussed, e.g., by Smoluchowski (1983).

Finally we note that for silicate surfaces, HWHM may be much greater (of the order
of degree). Such HWHM of about 1° was observed for high-albedo asteroids 44 Nysa
and 64 Angelina (Harris et al., 1989). As follows from Figures 2 and 3, for silicate
surfaces HWHM should be substantially wavelength-dependent. Therefore, meause-
ment of the variation of HWHM with wavelength would test whether CBL is a likely
explanation of the remarkable opposition spikes exhibited by these high-albedo asteroids
(Mischchenko and Dlugach, 1991).
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